В турнире по шахматам принимают участие мальчики и девочки. За победу в шахматной партии начисляют 1 очко, за ничью — 0,5 очка, за проигрыш — 0 очков. По правилам турнира каждый участник играет с каждым другим дважды. Сколько девочек могло принимать участие в турнире, если известно, что их в 9 раз меньше, чем мальчиков, и что мальчики набрали в сумме ровно в четыре раза больше очков, чем девочки?
Пусть в турнире принимали участие d девочек. Тогда всего детей было играя по две партии каждый с каждым они сыграли между собой
партий и разыграли
очков. Из них у мальчиков четыре пятых, а у девочек — одна пятая общего количества очков, то есть у девочек
очков. Заметим, что если каждая девочка выиграла у всех мальчиков, то вместе девочки набрали максимум
очков, а играя между собой, девочки распределили
очков. Поэтому наибольшее количество очков, которое могли набрать девочки, равно
Тем самым, имеем:
Следовательно, девочек не могло быть больше одной.
Если девочка была одна, то мальчиков было девятеро. Десять ребят 90 партий и разыграли 72 очка. Девочка набрала 18 очков, выиграв у каждого из мальчиков по две партии. Играя между собой, мальчики разыграли оставшиеся 72 очка.
Ответ: 1 девочка.

